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ABSTRACT 

The discrete Fourier transform can be adapted to handle vector sets 

(vectors with set valued components); the result is a vector set. The 

basic operation is the Minkowski addition. In case of vector balls and 

vector polygons explicit computation can be carried out. We make use of 

these results to: 

1. 

2. derive convergence criterion for an iterative process governed by 

calculate exact eigenvalue bounds for a perturbed circulant matrix and 

uncertain circulants, 

This research was supported by NASA Contract No. NAS1-15810 while the author 
was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.  



1. Introduction 

The linear transformation of a vector z E Cn , 

where F E Cnxn is the Fourier matrix of order n , 
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is called discrete Fourier transform (DFT). 

Suppose now that z is a set valued vector, that is, each component 

of z belongs to a bounded set in tne complex plane 

( 3 )  Zk E Z k C C  , k = l,...,n . 
Denote such vector set by Z .  What is the DFT of Z ?  An answer to this 

question depends on the choice of arithmetic operations that deal with sets 

as operands. Here, we choose the Minkowski addition of sets and the usual 

scalar multiplication defined as follows: for any two sets A and B ea d 

and a scalar a E Q: 

A @ B = {c : c=a+b , a E A ,  b E B) 

aA = (c:c=aa, a E A) . 
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A geometric interpretation of the Minkowski sum is that it represents the set 

of all possible ordinary sums of a and b when they move independently 

over set A and set B respectively. 

An arbitrary linear combination of sets follows by induction from 

definition ( 4 )  as 

I1 
iB ak% = alAl @ a2A2 tB ... 63 %nAn 
k= 1 

n 
= { c  : c = C akak , ak E %I 

k = l  

(5) 

Having a definition for linear combinations, it is possible to set up a 

linear transformation of a vector set. Let T E cmXn be an arbitrary 
linear transformation and V a vector set of dimension n , 

Then T 0 Vf is defined as follows: 

v @ ... @ tlnVn 

t v tB ... d tmnvn 

1 

ml 1 

(7) 
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Thus, a linear transformation of a vector set, denoted by 0 , is the 

usual linear transformation where the Minkowski addition replaces the 

ordinary addition in order to fit set valued operands. For more informa- 

tion about d and see f o r  example [ 2 ] .  

Definition: The discrete Fourier transform of a vector set Z is 

h 

Z = F o Z .  

The plausibility of this definition stems from a geometric interpretation; 

vector set 

ordinary DFT's when z varies over E , that is, 

A 

52 , which is well defined, represents the set of all possible 

From a computational point of view (9) is a poor algorithm even if applied 

statistically. There is, however, an effective procedure that relies 

heavily on the geometric structure of sets. The simplest case is that 

of balls. Let B(c,r) be a vector ball, that is, each component is a 

ball in ( la , 

iB(c,r) = 

- B(clyrl)l 

, k = l,...,n . d c E c c  k 
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I 

The set of vector balls is closed under the operation 

formulae exists for the calculation of centers and radii. 

transformation T, vector ball @(c,r) is mapped into another vector ball, 

say D, as follows : 

o , and explicit 

Under the linear 

Here, IT1 denotes the matrix whose elements are Itij I a and by the 

product y=Tc we mean 

Returning to ( 8 ) ,  suppose now that 22 (c,r) 

that is, each component Zk is a ball (with center ck, rr?.dius ‘k) 

containing, for example, uncertainty of measurements. 

is a vector ball of data, 

Theorem: The DFT of Z (c,r) is a vector ball, Z ( e y e )  with centers 

e = F c  (13)  

and radii 

-1 1 1 ... 1 
1 1 ... 1 
. .  . .  . .  
1 1 ... 1 

J 

. -  
1 r 

r2 

r n . .  

= -  I J r  
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Proof: Use of definition ( S ) ,  the closure property (11) and the fact that 

I w  ja I = 1 are the steps in the proof. 

An algorithm for fast Fourier transforms (FFT) must be slightly 
d 

modified in order to deal with ( 1 3 ) .  Since each ck€C , the computa- 

tional complexity of a modified FFT turns out to be O(nd h2n) 
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because there are O(nd) essential multiplications and additions per step. 

On the whole, computation of ball valued Fourier coefficients has the same 

complexity as (13), since (14) requires n operations. 

It is interesting to notethat the radii ofthe ball coefficients are the 

same, and equal  to a scaled arithmetic average of the radii of the ball 

data. This uniform spread of uncertainty is not accidental if one recalls 

that the coefficients in the Fourier expansion of a point valued function 

are equal to certain "rotational" averages (1 e f(x)dx) and that the ikx 

balls are invariant under unitary transformations ("rotations"). Moreover, 

since 

then, squaring both sides of (15) results in 

which can be written as 

thus symbolically exhibiting 

by DFT. 

It should be noted that 

the least square property of an averaging operation 

it is bpossible to recover the original 

data set since in general one has 

IB C T"'o (T o B) 

B c T 0 (T-lo B) 

for any nonsingular T and any vector set IB (for proof see [ 2 ]  ). 

and 
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Suppose now that each Zk belongs to a plane convex polygon Pk with 

vk vertices; frequently Pk is a real interval (with 2 vertices) or a 

complex interval (with 4 vertices, see Fig. 1). 

t 

Figure 1 

The vector set Ip = (P l,...,P )T is called (plane convex) vector polygon. 

Theorem: The class of vector polygons is closed under a . If 
n 

A A 

IP = F O P  then the number of vertices for each component of 1p satisfies 

k = l,...,n 

Proof: Q2, with 

pl and p2 vertices respectively is a plane convex polygon Q with u 
vertices satisfying 

The Minkowski sum of two plane convex polygons, Q, and 

For a constructive proof of this statement and an algorithm see [3 ] .  From 

this and the representation of 
h 

'k ' 
A U 

0-1) (j-1) 
'k ' Pk= 8 w 

j =1 

as a linear combination of n convex polygons, closure, as well as the bounds 
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in (18), follow by finite induction. 

Corollary: If II is a vector interval then E' = FOE such that each component 

of TP is a centrally symmetric convex polygon with at most n(2n) vertices 

if n is even (odd). 

Proof: 

(by a central symmetry we mean that there exists translation T of a convex 

body I' such that if y E r@-r  then -y E I '@.c  , v y E I'). The linear 

combination (5) of centrally symmetric convex convex bodies is again a centrally 

symmetric convex body. Combining these observations and the right hand side 

of (17) it follows that 2n is the maximum attainable number of vertices for 

each component of E'. If n is even, further simplification occurs due to 

central symmetry of the set of vectors 1, w,...,~ , i.e., w = -w 

so that only n/2 different directions exist. Hence, the maximum attainable 

number of vertices is 2 (n/2) = n . 

Each interval is a centrally symmetric convex polygon with 2 vertices 

n- 1 k n/2+ k 

The next corollary (the proof of which is almost identical to the one above) 

is motivated by the use of inverse DFT, namely when the transform is a vector 

complex interval II (see F i g .  1). 

Corollary: If TI is a vector complex interval then IP = F o IIc such that 

each component of 

2n(4n) vertices if n is even (odd). 

C * 
C 

E' is a centrally symmetric convex polygon with at most 

2. Perturbations of Circulants 

The close relationship between DFT and circulant matrices suggests 

an approach to the perturbation of eigenvalues of circulants. Let 

A = circ (al, a2, ..., a n ) 
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and suppose that each 

of circulants are given by 

akE%cQ . It is well known that the eigenvalues 

J;;F 

If ak varies independently over + then, by ( 8 ) ,  h k € % c  a and the 

explicit, computable, bounds on the eigenvalues of A are 

A\ 

3. - Iteration with Uncertain Circulants 

Consider an iteration process 

= Ab) Ym , Yo given ymtl 

where A(m) is a fixed matrix picked at the mth stage from 

An) A(m) E Circ (A1, A2,  .. . , 

where %CQ are given sets  representing uncertainty. This problem 

was suggested by P. J. Davis who considered a similar problem 

in [I]. 

Clearly, convergence (boundedness) of (23) requires that the product 

00 

P = TI A(m) 
m= 1 
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a 

converges (be bounded). This question is simplified by the fact 

that all circulants are diagonalizible by F . Hence, 

I co 

P = F*/  ll diag (A,(m),...,A (m) F . 
n I ( m = l  

By the result (221, of the previous section, 

n A 

= & F o  

so that 

n A 

It follows that the necessary and sufficient condition for boundedness 

of ( 2 3 )  is given by 

Ak C B ( 0 , l )  (unit ball) k = l,...,n . (29) 

This statement should be interpreted as follows: no matter how one picks 

sequence A(m) from (24), and/or Yo , boundedness will result provided 

condition (29) holds. 

Specializing, assume A = B(c.,r.) is a ball. Then Ak is a ball 
j J J  

too given by 
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that is, 

n 

j =1 
p k =  rj = P  

The condition (29) is equivalent to 

max Iv,l + D s 1 
k = 1, ..., n 

Note that p = 5 rj  < 1 is a necessary condition, 
j =1 

n 

while c l c j l  + r j  6 1 
j =1 

is a sufficient condition for boundedness. 
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